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S V Divinski and V N Dnieprenko 
!nstitute of Metal Physics, Ukrainian Academy of Sciences, Vemadskogo 36, Kiev-142, 
252680, U!uaine 

Received 28 October 1993. in final form 20 April 1994 

Abstract. A method has been developed to calculate the texture contribution to the anisotropy 
of the physical pro@es of polycrystalline materials. It staffs from an approach proposed 
earlier for modeUmg the rolling textures in FCC and BCC metals by a superposition of p& 
fibre components. The averaged values of the elastic consme and Young's modulus have been 
calculated for copper sheets with different textures. The method computes the component-by- 
component physical properry anisotropy and thus predicts the required component ratios for 
any required anisotropy. In ow approach the termre is described by the minimum number 
of componene. with the number of lasts being rigorously equal to the number of smcture 
components. 

1. Introduction 

The anisotropy of physical properties is a well known feafure of most metallic single 
crystals. In polycrystals, the value of a physical property in an arbitrary direction will 
also be determined by the grain distribution or texture. 

A number of methods exist for calculating the texture contribution to the physical 
property anisotropy. Some of them [l, 21 use an analytical presentation of the texture spread. 
Unfortunately, such methods have currently been developed for axial textures only. In the 
Bunge [3] method the texture contribution to the physical property anisotropy is computed 
by the coefficients Cy of a series expansion of the orientation distribution function (ODF). 
The ODF is usually reproduced from pole figure data [4]. However, simulation of real 
ODFs is required for analysing the texture quantitatively. Moreover, the problem of the 
determination of the optimum texture for any required anisotropy can be solved by a proper 
choice of the number of components and their dispersions. In practice, the quantitative 
texture parameters can be changed by variation in the deformation Conditions (temperature., 
deformation rate, etc) [5].  

Thus, the faithful simulation of the texture by a proper number of components is needed 
for prediction purposes. From our point of view, the choice of texture components' must 
be based on both texture and microstructure data. Microstructure elements witkclose 
substructure types turn out to have close orientations [6,7]. In this case each structure 
type may be attributed to a specific texture component. This correlation of orientation and 
structure can be established only if any texture component is considered as a limited fibre 
component (LFC), with an anisotropic spread with respect to the maximum [8,9]. ' The LFC 
concept was qualitatively proposed by Wassermann and Grewen [5] many years ago. This 
concept starts from the well known presentations of axial textures, which exhibit full axial 
symmetry. However, unlike the lasts the LFC dispersion may be given by a set of grain 
rotations with respect to some axis in a limited angular range less than 2?r. This approach 
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h m s  out to be very useful for the quantitative approximation of most experimental textures 
[8,9]. In our opinion, in the case of texture approximation by spherical distributions in [IO- 
121, such demarcation of structure elements over the texture components may be realized 
with difficulty and is less justified from a physical point of view. Also, in the approach in 
[8,9] the texture is described by a much smaller number of parameters as in [1&12]. 

A method is derived in the present paper for component-by-component averaging of 
the properties of textured materials using the minimum number of components, which 
correspond rigorously to the texture and structure types observed experimentally. Copper 
sheets rolled at different temperatures and, thus, with different textures are studied as an 
example. 

S V Divinski and V N Dnieprenko 

2. Theory 

Consideration of the dispersion of each texture component with respect to its own 'local' 
coordinate system, which is rigidly connected with this component, is the main feature of 
our approach. It is convenient to choose the so-called texture axes of the LFcs [SI as the 
Oz axes of these 'local' coordinate systems 193. The texture axis positions correlate with 
regions of abnormally high values of the pole density in some experimental pole figures 
[8,9]. The abnormally high maxima manifest themselves on the pole figures, the indices 
of which coincide with those of the crystallographic directions of the texture axes. To 
indicate the position of the component texture axis in an explicit form and to emphasize the 
importance of such presentations for the description of component spread the designation 
(hkf)[uvw] Iu'u'w'I is introduced for the component, the (hkf)  direction of which coincides 
with the rolling plane, and the [uuw] direction with the rolling direction (RD); Iu'u'w'I is 
the crystallographic direction of the texture axis. In our approach the ODF of a component 
must be calculated in its 'local' coordinate system, and the following analytical fonn has 
been found to correspond well to the experimental data [9]: 

= fl(Y2)fZ(YI + n) (1) 

where fl(yz) and d ( y 1  + n) are the corresponding exponents with the normalization 
coefficients. A set of Eulerian angles g, = (yl, 72, n) specifies the grain orientation in the 
'local' coordinate system (with respect to the component texture axis); q, a2 and 03 are the 
spread parameters. The u3-value determines the length of a region in orientation space with 
a constant orientation density. By such means one can simulate the so-called orientation 
tubes, which may be considered as LFC parts [8,9]. Hereafter any set of three Eulerian 
angles is determined as specified by Bunge [4]: the coordinate system is lirst rotated around 
the Oz axis, then around the new direction of the Ox axis, and finally once again around 
the Oz axis in its final position. 

Then, the totaI ODF fB(gB), which is defined in the space of the standard Eulerian angles 
Q, (DZ) (in the Bunge notations) with respect to the external coordinate system of the 

sample, can be calculated as the s u m  
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where the values of the angles y y ) ,  and y?' can be determined from 

g:"' = ( g f f ) ) - l g B ( p ) - l ,  (3) 

Here pr is the volume fraction of the kth textnre component, E,"=, pk = 1; 1 is the index 
numbering subsequently equivalent orientations of the kth component; Mk is the number of 
such orientations; the matrix of rotations gff' defines a transition to the 'local' coordinate 
system of the texture axis of the lth equivalent orientation in the kth texture component, and 
gf"' specifies the orientation of this component in the sample's coordinate system; finally 
gp) is the matrix of rotations by the Eulerian angles y y ) ,  yp', y?'. 

The correspondence of model and experimental textures may be considered as a method 
of texture parameter determination. Now, the texture contribution to the elastic modulus 
anisotropy in polycrystals may be theoretically determined by averaging single-crystal 
characteristics over the grain orientations in the sample. 

Let S&,, be the tensor of compliances in the coordinate system of the elementary cell 
of grain. Then, in the sample coordinate system we have 

smpy = ffmiffnjffpaffvfS;kl (4) 

where am; are the directional cosines. For the cubic symmetry after simplifications we have 

si;;; = ~p~~~ - 2s (olilcii2 + ~ r ? ~ O r : ,  + a&?3) 

= s?,, + so(or~=,cif1 + a?2uf2 + u&j3) 

~ i j ; j  = s&= + S ~ ( ~ ~ = , C Y ~ ~  + 01,22c& + a&$3) 

0 2 2  i = I ,  2,3 

i, j = 1,2,3 

i, j =, 1,2,3 

i + j 
i # j 

(5) 
Sijkl = sO(f f ; l f f j l l%lf f f l  + ffiZffjZffkZffl2 + ffi3ffj3ffk3ff13) 

i, j ,  k, l  = 1,2,3 i # j ,  k # 1 

so = splIl - qlu - 2s&,,. 

Since the grains are distributed on orientations in accordance with f ~ ( g ~ ) ,  the averaged 
tensor (SmnPy) of the compliances will be 

(6) 

Thus, the problem is reduced to the calculation of the three-dimensional integral, 
equation (6). which is quite troublesome. However, if we take into account that, in our 
approach, the ODF fB(gB) is virtually a function of two independent variables, namely yz 
and y1 + y3 (see (I)), then the three-dimensional integral can be reduced to a product of 
two one-dimensional integrals. 

For given' values of dispersion of the kth texture component the g B  matrix of rotation 
or, equivalently, the directional cosines or,; from (4) and (5) will be determined by 

(7) 

which follows directly from (3). Since elements of the matrices g r '  and gp') are constants, 
which are defined by the crystallographic orientation of the kth texture component and its 
texture axis, the directional cosines ammi may be written in the following form: 

1 
(&w)  = / f ~ k ? ~ ) & n p q  dgB. 

(kf) gB =go g y g i  

ami = T!')(Y~)~(~)(~~)T,~)(M). (9) 
s 
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q(i)(yj) are trigonometric functions (sines or cosines) for yi, i = 1,2 ,3 .  
One remark must be made. A set of equivalent orientations indicated in (2) and (3) 

by the index I exists for each texture component. While these orientations correspond to 
different maxima in the Eulerian space, they are physically indistinguishable. Thus, it is 
enough to sum only over the texture components k in equation (6). 

In averaging (5) by the type (6) the problem is reduced to averaging different directional 
cosink combinations upon the texture. Substituting ami in (6) by its values from (5) we 
may obtain the following expressions: 

S V Divinski and V N Dnieprenko 

x [I LI fz(y1 + y3) sin" Y I  cosq' y~ sin" y3 cos', M dyl dy3. (9) 

Here'the symbol (. ..) denotes any combination of the directional cosines of the 
(am~anjaPkaq~) type from (5), which is averaged upon the texture. The powers satisfy 
the following' conditions: m, + n, < 4, ps + q3 < 4 and tr + r, < 4. Taking into account 
the explicit form of fi(y1 + y3) the two-dimensional integral (9) can be reduced to a one- 
dimensional integral by the variable change U = y l +  y3, v = y, - y3 and by subsequent 
analytical iniegration with respect to v .  Then we have 

(10) 

Here the relation pJ + qx < 8 holds for the powers ps and qs. Because of the huge number 
of the ifems in (10) all the analytical transformations have been canied out by computer. 

The onedimensional integrals over y~ and U in (IO) can be computed for the given 
dispersion parameters of texture components. The number of the integrals, which have to 
be calculated,nnmerically, decreases when trigonometric identities are used and for the case 
under consideration, i.e.~metals with a cubic lattice, it is nine over y~ and 19 over U. 

The tensor of the elastic moduli for rolling texture of cubic metals is known to have 
orthotropic symmetry which can be characterized by nine non-zero constants. However, the 
symmetry may be lower for separate components. Thus, we must use a general expression 
for Young's modulus { E )  of textured material (the direction is specified by the directional 

Table 1. Component composition of rolling texture of copper at different tempemmres. 

Rolling P h a I  fibre component Volume grad 
temperature part 

(hkl) (uuw) Iu'dw'I p i  a1 02 9 (K) 
300 1 1 1 0 ~  (iiz) iiiil 0.505 ' 5.2 5 io' 

(112) (ni) 11111 0.395 4.6 5 12 

(OOIJ [loo1 loo11 0.025 7 8 0 
77 (110) (iiz) iiiii 0.674 7.5 14 o 

(iiz) (iii) 11111 0.131 6 IO 15 

-. , ,, 

(110) [OOll 11101 0.075 6 20 10 

{]lo) [OOI] 11101 0.195 8 10 25 
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0 )  

Figure 1. The model pole figures ( I l l )  and (1001 for copper rolled at (a) 71 K and (b) 300 K. 
(c )  The decomposition of the model pole figure 11111 for copper rolled at 300 K into separate 
components. 

cosines PI, b2 and p3): 
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Figure 2. The Sections of model ODFS by 
m = wnsant planes for copper rolled 
at (a) 17 K and (b) 300 K. The intensity 
levels are 1, 2, 5, 10 and 15. 

3 where b k i m n  = (&I a!kiUiiU,,,iUni), k ,  1, m ,  n = 1,2,3. 
The Reuss approximation is used in the present work to determine the averaged 

macroscopic characteristics of the polycrystal sample. In employing the Voigt approximation 
the compliance tensor S l j ~  must be replaced by the elastic modulus tensor Cijx in equations 
(5)-(10). The directional cosines am; are averaged identically. Moreover, to calculate 
Young’s modulus, one additional expression is needed to transform (Cijkl) into (S i jk l ) .  

3. Results and discussion 

Anisotropy of the compliances and Young’s modulus of the main texture components of 
copper sheets rolled at: 300 and 77 K has been examined. The spread parameters, from 
which the experimental pole fi,wes were approximated, are listed in table 1. The volume 
fractions and crystallographic orientations of separate texture components are also presented 
in table 1. 

In this case the distribution of pole densities P { ~ ) ( j j )  for a pole figure (g) and for the 
ODF (1) can be cdcdated from 
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Table 2. Averaged compliances (Spq) for separate texhlre components and the total textures for 
copper plates rolled at different tempenrures. SCD indicates the single-crystal data. 

Rolling 
Temp. temp. Partialfibre 
(K) (K) component ( S d  (.%d (S3d (Sd (S13) (su) Vu) (Sss) (Sss) 

-0.571 1.236 79 SCD 

77 

300 

300 sm 
77 

300 

500 SCD 

71 

300 

1.378 
(iio)(iiz)iiiii 0.837 0.620 
(iiz](iii)lii  1 1  0.727 0571 

(1 10) (1 i2) I 1 i 11 0.695 0.639 
(ii2](1 ii)i 11 11 0.705 0.592 

(110)(001)~1101 0.597 0.724 
Total 1.086 0.637 

(IlO)(OOl)llIO~ 0.547 0.719 
TOM 1.112 0.636 

1.500 
(iio)(iiz)iiiil  0.904 0.664 
{i12)(iii)iiiii 0.782 0.610 

{no)(iiz)liiii  0.747 0.685 
(1 12)(iii)iiiii  0.758 0.633 

(IlO)(OOl)lllOl 0.639 0.778 
Total 1.178 0.682 

(llO)(OOl)lllOl 0.584 0.773 
Total 1.207 0.682 

1.660 
{iio)(iiz)iiiii 0.999 0.733 
jiiz)(iii)iiiii  0.864 0.673 

Total t.303 0.754 
{iio)(iiz)iiiil 0.825 0.757 
( i n ) ( i i i ) i i i i l  0.837 0.699 

{llO)(OOl)lllOl 0.705 0.860 

(llO)(OOl)lllOl 0.644 0.854 
Total 1.335 0.753 

0.726 -0.247 -0.354 -0.136' 2.975 2.104 2.530 
0.729 -0.166 -0.3% -0.168 2.847 2.222 2.854 
0.717 -0.184 -0.177 -0.304 2.305 2.811 2.785 
0.728 -0.380 -0.470 -0.212 3.435 1.639 2.002' 
0.719 -0.190 -0.269 -0.213 2:667 2.443 2.760 
0.719 -0.171 -0.298 -0.185 2.779 2.327 2.836 
0.716 -0.157 -0.154 -0.326 2.217 2.903 2.891 
0.721 -0.395 -0.481 -0.471 3.501 1.597 1.938 

0.781 -0.271 -0.389 -0,485 3.238 2.277 2.748 
0.7S4 -0.182 -0.356 -0.184 3.096~ 2.407 3.105 
0.771 -0.201 -0.194 -0.333 2.499 3.057 3.028 
0.783 -0.417 -0.517-0.216 3.745 1.764 ' 2.165 
0.773 -0.208 -0.295 -0.233 2.898 2.651 3.001 
0.774 -0.187 -0.327 -0.202 3.022 2.524 3.084 
0.770 -0.716 -0.168 -0.357 2.402 3.159 3.146 
0.776 -0.434 -0528 -0.343 3.818 1.719 2.095 

0.863 -0.309 -0.440 -0.173 3.601 2.536 3.058 
0.866 -0.210 -0,404 -0.212 3.445 2.680 3.454 
0.852 -0.232 -0.2%-0.378 2.782 3.401 3.369 ' 

0.865 -0.471 -0.582-0.327 4.164 1.967 2.411 
0.854 -0.239 -0.336 -0.268 3.2%' 2.950 3.339 . 
0.855 -0.216 -0.371 -0.233 3.362 2.810 3.431 
0.850 -0.199 -0.195 -0.405 2.675 3.514 3.499 
0.857 -0.490 -0.594 -0.127 4,245 1.917 2.334 

-0.628 1.320 

-0.705 1.475 

where g r )  = ~~))-'g$)n(~)(g~))-I: g$) is the matrix of rotations of grains to orientations 
for which f = ,&ig$), where hi, i = 1, . . . , M, are the equivalent planes from the [f?] family: 
n(8) is the matrix of rotations by the angle S around the direction. The rest of the symbols 
are the same as in (2) and (3). Model pole figures (1 11) for different rolling temperatures 
are shown in figures l(a) and l@). It is seen that they are in good agreement with the 
pole figures observed experimentally (see, e.g, [S, 131). In figure l(c) the decomposition of 
the [ill) model pole figure for copper rolled at 300 K into the separate LFCS is presented. 
Hereafter the sum of two symmetric components (llO)[li2]llil[ and (IlO)[li?]llii[ (or 
(1 12)[11 I] 11 11 I and (1 12)[ii 111 11 1 I) is considered as a unified component [ l l O ] ( l ~ Z )  1171 [ 
(or [112)(11i)]lll[, respectively). This is convenient for studying the physical property 
anisotropy of the separate components, since these symmetric components have a common 
nature of formation and development. Moreover, each symmetric component mentioned 
above taken separately has a symmetry lower than the orthotropic symmetry. In t h i s  case, it 
was established that the nine non-zero elastic constants, which characterize the orthotropic 
symmetry, coincide for symmetric components, but other non-zero constants have the same 
magnitudes and opposite signs and vanish under summation. In figure I(c) the pole figures 
for the separate components are presented with allowance for their volume fiactions in the 
total texture (figure l(b)). 
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C110)<112>11111 Cl 1 2  i l 1 1 > 1 1 1 1  I CllD~<CQl>lllQl 

C) 

F m e  3. Three-dimensional images of the anisotropy of Young’s modulus for copper plates 
rolled at (a) 71 K and (b) 300 K and (c) the same for the sepamte wmponents of the lexture of 
rolling at 300 K. 

<E>, GPa t b ,  GPa 

RD TD RD MI 

a )  b) 
Figure 4. Angular dependences of Young’s moddus for a direclion in (a) the RD-TD and (b) 
the RE-ND planes for 79 K (curves I), 300 K (curves 2) and 500 K (curves 3): -, anisotropy 
for copper plater mlled at 77 K . . . . . .. anisotropy for copper plates rolled at 300 K. 

The model three-dimensional ODFs are presented in figure 2 as two-dinensional sections 
with the 902 = constant planes. The even parts of the series expansion of the model ODFs 
were determined to correspond well to the ODFs reconstructed from the experimental pole 
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T D m  MI 
d) 

m 
E) 

Figure 5. Angular dependences of Young's modulus for a directiy in the (a) R D - ~  and (b) 
no-~oplanesfordifferenttexturecomponents: ......, (110~(1i2~111-1 incopperrofledat77K; 
. . . .  , (11O}(li2)11ill in copper rollid at 300 K; ----. {112)(111)11111 in copper rolled at 
77 K; ---. { i i z } ( i i i ) l i i i l  in coppertdied ai 300K;--, (Ilol(oo1)lliol in copper roiled 
at 77 K, - - -, ~llO}(OOl)lI 101 in copper rolled at 300 K. (c). (d) The angular dependences 
of A @pa) in the same planes for the fouowing components: ......, (I10)(1iz)li l l l;  ----, 
(iiz}(iii}piil;---. (~~a}(ool)(llol;--.thetotaltexture. 

figures by the BungeRoe technique [9] .  Note that we analyse peculiarities of different 
texture component contributions to the property anisotropy; for details of experimental 
verification of the model the reader should consult IS ,  91. 

The averaged (Sijkl)-values are presented in table 2 with the use of the routine notation 
of a four-rank tensor by a two-dimensional 6 x 6 matrix. The singlecrystal values S& 
were taken from [I41 for 79 and 300 K and were calculated on the basis of the results of 
[I51 for 500 K. 

In figure 3 the three-dimensional images of Young's, modulus are presented for different 
types of the texture under consideration and for different components. The spacing of any 
surface point with respect to the reference point is proportional to Young's modulus ( E )  in 
this direction. As is obvious the anisotropy in the separate components is more pronounced 
than that for the total texture. 

Note that we consider two types of temperature effect on the anisotropy, namely 
the effect of the rolling temperature (77 and 300 K) and the effect of the measurement 
temperature (79, 300 and 500 K). Only textural changes are taken into account. 

The measurement temperature effect on the anisotropy of Young's modulus for the FX& 
TD and RD-ND planes is shown in figure 4. Here TD is the transverse direction, and ND 
is the normal direction. The deformation temperature is clearly seen to affect substantially 
the anisotropy of Young's modulus mainly in the RD and slightly in the TD and M). This is 
caw& by the decrease in volume fraction of the {ID}( 11 i) I 11 11 component (see table 1) 
in the deformation texture of copper rolled at Td = 77 K, i.e. of the component having 
the maximum value of Young's modulus in the RD. The angular dependence of Young's 
modulus in the RD-TD plane of the (llO)(liZ)~lill component is almost symmetric to 
that for the [112}(11i)lllll component with respect to a direction making an angle of 45" 
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with the RD, (figure 5(a)). The effect of the spread magnitude of separate components on 
the anisotropy is easily seen from figures 5(c) and 5(d) where the angular dependences 
A = (E)' - (E)b are shown for three main texture components and for the total value of 
Young's modulus. The superscript c indicates a component in the texture of copper rolled 
at 300 K and the superscript b indicates the same component in the texture of copper rolled 
at 77 K. In other words this is the dependence of the deformation temperature effect on 
the measurement temperature. From figure 5 it is seen that the magnitude of spread of the 
(112)(11i))1111 component has no effect on Young's modulus in the TD and this holds also 
for the {llO}(liZ)llill component in a direction making an angle of about 55" with the 
RD in the R D - ~  plane. This correlates with locations of the exit of the [ 1 lo} poles for the 
components under consideration. 

Values of the elastic properties in directions out of the sheet plane must be known in 
order to calculate the stress and strain state of the anisotropic plates [16]. However, the 
experimental measurement of these values under sufficiently low thicknesses of the plates 
presents great difficulties. In this case, one may use the theoretical calculations, e.g. in the 
framework of the approach presented here. 

The analysis of contributions of separate components to the total anisotropy shows that 
Young's modulus can be varied by the texture in the RD and to a smaller extent in the TD 
and the ND in the case of rolled copper. 

In this paper the results of calculations in the Rems approximation are presented, since 
only relative changes in the elastic properties and the contributions of separate texture 
components were of basic interest to us, but their precise magnitudes were not. 
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