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Abstract. A method has been developed to calculate the texture contribution to the anisotropy
of the physical properties of polycrystalline materials. It starts from an approach proposed
earlier for modelling the relling textures in F¢ and Bcc metals by a superposition of partial
fibre components. The averaged valves of the elastic constants and Young’s modulus have been
calculated for copper sheets with different textures. The method computes the component-by-
component physical property anisotropy and thus predicts the required component ratios for
any required anisotropy. In our approach the texture is desceibed by the minimum number
of components, with the number of lasts being rigorously equal to the number of structure
compomHents.

1. Introduction

The anisotropy of physical properties is a well known feature of most metallic single
crystals. In polycrystals, the value of a physical property in an arbitrary direction will
also be determined by the grain distribution or texture.

A number of methods exist for calculating the texture contribution to the physical
property anisofropy. Some of them [1, 2] use an analytical presentation of the texture spread.
Unfortunately, such methods have currently been developed for axial textures only. In the
Bunge [3] method the texture contribution to the physical property anisotropy is computed
by the coefficients C{* of a series expansion of the orientation distribution function (ODF).
The ODF is usually reproduced from pole figure data [4]. However, simulation of real
ODFs is required for analysing the texture quantitatively. Moreover, the problem of the
determination of the optimum texture for any required anisotropy can be solved by a proper
choice of the number of components and their dispersions. In practice, the quantitative
texture parameters can be changed by variation in the deformation conditions (temperature,
deformation rate, etc) [5]. ’

Thus, the faithful simulation of the texture by a proper number of components is needed
for prediction purposes. From our point of view, the choice of texture components must
be based on both texture and microstructure data, Microstructure elements with close
substructure types turn out to have close orientations [6,7]. In this case each structure
type may be attributed to a specific texture component. This correlation of orientation and
structure can be established only if any texture component is considered as a limited fibre
component (LFC) with an anisotropic spread with respect to the maximum [8,9). The LFC
concept was qualitatively proposed by Wassermann and Grewen [5] many years ago. This
concept starts from the well known presentations of axial textures, which exhibit full axial
symmetry. However, unlike the lasts the LFC dispersion may be given by a set of grain
rotations with respect to some axis in a limited angular range less than 27r. This approach
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furns out to be very useful for the quantitative approximation of most experimental texiures
[8,9]. In cur opinion, in the case of texture approximation by spherical distributions in [10-
12], such demarcation of structure elements over the texture components may be realized
with difficuity and is less justified from a physical point of view. Also, in the approach in
[8, 91 the texture is described by a much smaller number of parameters as in [10-12].

A method is derived in the present paper for component-by-component averaging of
the properties of textured materials using the minimum number of components, which
correspond rigorously to the texture and structure types observed experimentally, Copper
sheets rolled at different temperatures and, thus, with different textures are studied as an
example.

2. Theory

Consideration of the dispersion of each texture component with respect to its own ‘local’
coordinate system, which is rigidly connected with this component, is the main feature of
our approach. It is convenient to choose the so-called texture axes of the LFCs [5] as the
Oz axes of these ‘local’ coordinate systems {9]. The texture axis positions correlate with
regions of abnommally high values of the pole density in some experimental pole figures
[8,9]. The abmormally high maxima manifest themselves on the pole figures, the indices
of which coincide with those of the crystallographic directions of the texture axes. To
indicate the position of the component texture axis in an explicit form and to emphasize the
importance of such presentations for the description of component spread the designation
(hkD[uvw]|u'v' w'] is introduced for the component, the (#k!) direction of which coincides
with the rolling plane, and the [#vw] direction with the rolling direction (RD); |u'v'w’| is
the crystaliographic direction of the texture axis. In our approach the ODF of a component
must be calculated in its “local’ coordinate system, and the following analytical form has
been found to correspond well to the experimental data [9]:

? - _ 2
f(yla Yo, }’3) =A3Xp (—EJ:/:'—Z) exp {_% (l}’l +}’31 G3+[J3 Iyl+y3l!) :l

1 2o 2

= film) ol +¥) 1)

where fi(y2) and fa(y: -+ y3) are the corresponding exponents with the normalization
coefficients. A set of Eulerian angles g, = (y1, ¥2, ¥3) specifies the grain orientation in the
‘local’ coordinate system (with respect to the component texture axis); oy, oz and oy are the
spread parameters. The g3-value determines the length of a region in orientation space with
a constant orientation density. By such means one can simulate the so-called orientation
tubes, which may be considered as LEC parts [8,9]. Hereafter any set of three Eulerian
angles is determined as specified by Bunge [4]: the coordinate system is first rotated around
the Oz axis, then around the new direction of the Ox axis, and ﬁnally once again around
the Oz axis in its final position.

Then, the total ODF fg{gp), which is defined in the space of the standard Eulerian angles
g1 (@1, P, @) (in the Bunge notations) with respect to the external coordinate system of the
sample, can be calculated as the sum

M
o, @, p) = Z;,—Z v, v @
=1
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where the values of the angles y(“), yz(“) and y,

(kz) _ (g(kl)) . (g(kf})—l (3)

) can be determined from

Here p; is the volume fraction of the kth texture component, E,‘f_l Pe = 1; I is the index
numbering subsequently equivalent orientations of the kth component; My is the number of
such orientations; the matrix of rotations g“") defines a transition to the ‘local’ coordinate
system of the texture axis of the Ith equivalent orientation in the kth texture component, and
31 spec1ﬁes the orientation of this component in the sample’s coordinate system; finally
g% is the matrix of rotations by the Bulerian angles w0, 0y,

The correspondence of model and experimental textures may be considered as a method
of texture parameter determination. Now, the texture contribution to the elastic modulus
anisotropy in polycrystals may be theoretically determined by averaging single-crystal
characteristics over the grain orientations in the sample.

Let S?j,d be the tensor of compliances in the coordinate system of the elementary cell

of grain. Then, in the sample coordinate system we have

Smnpg = am;anjapkoeq;S?ju 4)
where &,,,; are the directional cosines. For the cubic symmetry after simplifications we have
St = Sl‘ill —25° (Ot,lotrz +a11a,3 -I—C£,2O£13) i=1,2,3
Siiji = S + 5 (0551%'1 +°‘12“j2 + "’-’530-’;'3) Lj=123 i#]

Sijij = 855 + SN 0y + ey + ohork) i,j=12,3 i )

0

Sijikg = 8§ (o111 O + a0ty -+ 0&'3%3%3“{3)
i, j,k,1=1,2,3 iFjk#1

0 _ o0 _ gl

§° = Sy — Stz — 25535s-

Since the grains are distributed on orientations in accordance with fz(gg), the averaged
tensor {Smupg) of the compliances will be

(Smnpq f fB (SB)Smnpq 7 (6)

Thus, the problem is reduced to the calculation of the three-dimensional integral,
equation (6), which is quite troublesome. However, if we take into account that, in our
approach, the ODF fg(gg) is virtually a function of two independent variables, namely 3»
and y1 + y; (see (1)), then the three-dimensional integral can be reduced to a product of
two one-dimensional integrals.

For given values of dispersion of the kth texture component the gg matrix of rotation
or, equivalently, the directional cosines a,,; from (4) and (5} will be determined by

g =8 g, e 6

which follows directly from (3). Since elements of the matrices g5 and g'*” are constants,

which are defined by the crystallographic orientation of the kth texture component and its
texture axis, the directional cosines o,; may be written in the following form:

omi = Y LT ()T (). ®)
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T©(y;) are trigonometric functions (sines or cosines) for y;, i = 1,2, 3.

One remark must be made. A set of equivalent orientations indicated in (2) and (3)
by the index [ exists for each texture component. While these crientations correspond to
different maxima in the Eulerian space, they are physically indistinguishable. Thus, it is
enough to sum only over the texture components k in equation (6).

In averaging (5) by the type (6) the problem is reduced to averaging different directional
cosine combinations upon the texture. Substituting a,,; in () by its values from (5) we
may Gbtain the following expressions:

{.)= Z o3 Zas f Fi(r2) sin™ yp cos™ yysiny dyy

T
x f £ + v3) sin™ yq cos? ¥ sin” y3 cos™ 3 dyy dya. ©
gt of =

Here the symbol (...) denotes any combination of the directional cosines of the
{OmiOtnjCtprigr) type from (5), which is averaged upon the texture. The powers satisfy
the following conditions: m; +#; £ 4, ps + g, £ 4 and £, + r, € 4. Taking into account
the explicit form of f2() + y4) the two-dimensional integral (9) can be reduced to a one-
dimensional integral by the variable change u = ¥ + 73, ¥ = ¥ — ¥3 and by subsequent
andlytical integration with respect to v. Then we have

2
(.. 8,,2 Z f Fi(y2) s 9, cos™ ya dys [ - falu)(asutby) sin® ucos® udu.
(10)

Here the relation p; + g, < 8 holds for the powers p; and g;. Becanse of the huge number
of the items in (10) all the analytical transformations have been carried out by computer.

The one-dimensional integrals over 3, and u« in (10) can be computed for the given
dispersion parameters of texture components. The number of the integrals, which have to
be calculated numerically, decreases when trigonometric identities are used and for the case
under consideration, i.e.- metals with a cubic lattice, it is nine over ¥, and 19 over u.

The tensor of the elastic moduli for rolling textures of cubic metals is known to have
orthotropic symmetry which can be characterized by nine non-zero constants. However, the
symmetry may be lower for separate components. Thus, we must use a general expression
for Young’s modulus {E) of textured material (the direction is specified by the directional

Table 1. Component composition of rolling textures of copper at different temperatures.

Rolling Partial fibre component Volume grad
temperature part —_—
X {hki} {uvw)} fu'v w'] P o1 o3 o3
300 (o] (11 iy 0505 52 5 20
112y (1 [11%] 0.395 46 5 12
{110} [oo1] 119 0.075 6 20 10
o1} 0@  [oon 0.025 7 8 0
77 {110y (1 1311 0.674 75 14 ]
{112y ly  un 0131 6 19 15

{110y  [001) [110] 0.195 8 10 25
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Figure 1. The model pole figures {111} and {100} for copper rolled at (a) 77 K and (b) 300 K.

(c} The decomposition of the model pole figure {111} for copper rolled at 300 K into separate
components.

cosines By, Bz and B3):
1 .
& = St - S“(Zﬁfﬁ?(l = 3Ag) + 3 AuakBi =2 D Mrint B Bnfh
ksl k mEl

k

— An13B18287 — AnafiBips — A1312ﬁ12ﬁ253) (11)



8508 S V Divinski and V N_Dnieprenko

P, =20

\J
- -
2, =10 = :_

el 4° lal

@
[« WP

¥=10
wg a o
LA AL e
Figure 2. The sections of model oprs by
| il ¢2 = constant planes for copper rolled
w at (@) 77 ¥ and {b) 300 K. The intensity
) levely are 1, 2, 5, 10 and 15.

where Appn = (Z::’:l S it Y, kLo, n = 1,2, 3.

The Reuss approximation is used in the present work to determine the averaged
macroscopic characteristics of the polycrystal sample. In employing the Voigt approximation
the compliance tensor S;;4; must be replaced by the elastic modulus tensor Cy;y, in equations
(5)<10). The directional cosines o;,; are averaged identically. Morcover, to calculate
Young’s modulus, one additional expression is needed to transform (Cjsp) into {Sij).

3. Results and discussion

Anisotropy of the compliances and Young’s modulus of the main texture components of
copper sheets rolled at 300 and 77 X has been examined. The spread parameters, from
which the experimental pole figures were approximated, are listed in table 1. The volume
fractions and crystallographic orientations of separate texture components are also presented
in table 1. ‘

In this case the distribution of pole densities Py, (¥) for a pole figure {H} and for the
QDF (1) can be calculated from

M N [ , , ,
P =33 5 [ 10 0P vy 08 12)

=5 2r M
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Table 2. Averaged compliances (S,,) for separate texture components and the total textares for
copper plates rolled at different temperatures. sco indicates the single-crystal data.

Rolling
Temp. temp.  Partial fibre
Ky & compaonent {S1) {8z} (S=s) (S1z2) (Sis) (8}  (Sae)  (Sss)  {Ses)
79 scD 1.378 —~0.571 1.236

77 {110){112}|311] (.837 0620 0.726 —0.247 —0.354 —0.136 2975 2104 2530
[LI2KEITY 1L 0727 0571 0729 —0.166—0.324 —0.168 2.847 2222 2854
{11010013)1104 0397 0.724 0717 —C.184—0.177 —0.304 2305 2.811 2.785
Total 1.086 0637 07230380 -0470 —0212 3435 1639 2.002°

300 (L103(1I2)[111] 0695 0639 07190190 -0.269 —0213 2667 2443 2.760
{LI2H DI 0705 0592 0.719—0.171 ~0.298 —0.185 2779 2327 2.836
{110H001)]110] 0.547 0.719 0716 —0.157 —0.154—0326 2217 2903 23891
Total 1112 0636 072103950481 0471 3501 1.597 1.938

300 sep 1500 . —0.628 1.320

el [110)(112}(171) 0.904 0.664 0.781-0271—0.389 —0485 3238 2277 2.748
{112K211}]111] 0.782 0610 0784 —0.182—0356 —0.184 3.096. 2407 3.105
{110}{001}|110) 0.639 0778 0771 —0201-0.194 —0,333 2499 3.057 5028
Total L178 0682 0783 041705170216 3745 1764 2.165

300 (110301323111 0747 0685 0.773—0.208—0295—0233 2898 2651 3.001
f12HID111 0758 0633 0.774 0187 —0.527 —0.202 3022 2524 3.084
{110}{001}|110] 0.584 0773 0770 —0.716 —0.168 —0.357 24062 3.15% 3.146
Total 1207 0682 0.776—0434-0.528 —0.343 3.818 1719 2.095

500  scp 1.660 —0.705 ) 1475

7 {110}(112}|111] 0.99%9 €.733 0.863 —0.309 —0440—0.173 3601 2536 3.058
MDY 0864 0673 (0.866 —0210 0404 —0212 3445 2680 3454
{110}{001}|110] 0705 0.860 0.852 —0.232—0.224—0.378 2782 3401 13.369
Total 1303 0754 0.865—0471 —0.582 0327 4164 1.967 2411

300 (11oy1i2111] 0.825 0757 0.854 —0.239 —0.336—0.268 3224 2950 3.33% .
{112}(111}/111] 0.837 0699 0.855~0216 —0.371 —0.233 3362 2.810 3431
{110}{001}[110] 0.644 0.854 0850 -0.199—0.195—0.405 2675 3514 53499
Total 1335 0753 085704900594 —0.127 4245 1917 2334

where g("‘) = (g(k))‘lg(‘)ﬂ(a) (g¥); g is the matrix of rotations of grains to orientations

for which ¥ = h,gB ,where &;, i =1, ..., M, are the equivalent planes from the {#} family;
(8) is the matrix of rotations by the angle § around the 7 direction. The rest of the symbols
are the same as in (2) and (3). Model pole figures {£11} for different rolling temperatures
are shown in figures 1(2) and 1(b). It is seen that they are in good agreement with the
pole figures observed experimentally (see, e.g, [5, 13]). In figure 1(c) the decomposition of
the {111} model pole figure for copper rolled at 300 K into the separate LFCs is presented.
Hereafter the sum of two symmetric components (110)[112]|111] and (110)[112]|111] (or
(112)[111]|111! and (112)[111]]111]) is considered as a unified component {110}(112)[111
(or {112}(111}]111|, respectively). This is convenient for studying the physical property
anisotropy of the separate components, since these symmetric components have a common
nature of formation and development. Moreover, each symmetric component mentioned
above taken separately has a symmetry lower than the orthotropic symmetry. In this case, it
was established that the nine non-zero elastic constants, which characterize the orthotropic
- symmetry, coincide for symmetric components, but other non-zero constants have the same
magnitudes and opposite signs and vanish under summation. In figure 1(c) the pole figures
for the separate components are presented with allowance for their volume fractions in the
total texture (figure 1(b)).
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(11031211111 {11z viti>11111 [1161<DDT>|110!

e)
Figure 3. Three-dimensional images of the anisotropy of Young’s modulus for copper plates
rolled at {a) 77 K and (b} 300 K and {(c} the same for the separate components of the texture of
rolling at 300 K.

<E>, GPa E
160

140 |
120 fon 2t

100

a) D)

Figure 4. Angular dependences of Young's modulus for a direction in (a) the RD~TD and (b}
the rp—ND planes for 79 K (curves 1), 300 K (curves 2) and 500 K (curves 3): ——, anisotropy
for copper plates rolled at 77T K; --- Tt anjsotropy for copper plates rolled at 300 K.

The model three-dimensional ODFs are presented in figure 2 as two-dimensional sections
with the 2 = constant planes. The even parts of the series expansion of the model ODFs
were determined to comespond well to the ODFs reconstructed from the experimental pole
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Figure 5. Angular dependences of Young's modulus for a direction in the (3) R0-~TD and (b)
RD=ND planes for different texture components: ---- - 1 10}{1T2}I111| in copper rolfed at 77 K;
o« v, {110}112))111] in copper rolled at 300 K; ----, {112}(111)}111) in copper rolled at
77 K3 — — =, {112}{111}|111] in copper rolled at 300 K; ——, {110}{001){110| in copper rolled
at 77 K; — — —, {110}{001}|110[ in copper rolted at 300 K. (c), (d)} The angular dependences
of A (GPa) in the same planes for the following components: ----- - , [110}(112)[1?1[; ——
{12 — — -, {110J4001)| 110}, ——. the total texture.

figures by the Bunge—Roe technique [9]. Note that we analyse peculiarities of different
texture component contributions to the property anisotropy; for details of experimental
verification of the model the reader should consult [8,9].

The averaged {Si;/}~values are presented in table 2 with the use of the routine notation
of a four-rank tensor by a two-dimensional 6 x 6 matrix. The single-crystal values Sg;k,
were taken from [14] for 79 and 300 K and were calculated on the basis of the results of
[15] for 500 K. )

In figure 3 the three-dimensional images of Young’s modulus are presented for different
types of the texture under consideration and for different components. The spacing of any
surface point with respect to the reference point is proportional to Young’s modulus (£} in
this direction. As is obvious the anisotropy in the separate components is more pronounced
than that for the total texture.

Note that we consider two types of temperature effect on the anisotropy, namely
the effect of the rolling temperature (77 and 300 K) and the effect of the measurement
temperature (79, 300 and 500 K). Only textural changes are taken into account.

The measurement temperature effect on the anisotropy of Young’s modulus for the RD—
TD and RD-ND planes is shown in figure 4. Here TD is the transverse direction, and ND
is the normal direction. The deformation temperamre is clearly seen to affect substantially
the anisotropy of Young’s modulus mainly in the RD and slightly in the TD and ND. This is
caused by the decrease in volume fraction of the {112}{111}]111[ component (see table 1)
in the deformation texture of copper rolled at Ty = 77 K, ie. of the component having
the maximum value of Young’s modulus in the RD. The angular dependence of Young's
moedulus in the RD-TD plane of the (11041121111} component is almost symmetric to
that for the {112}(111}]111 component with respect to a direction making an angle of 45°
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with the RD, (figure 5(2)). The effect of the spread magnitude of separate components on
the anisotropy is easily seen from figures 5(c) and 5(d) where the angular dependences
A = (EY® — (E)® are shown for three main texture components and for the total value of
Young’s modulus. The superscript ¢ indicates a component in the texture of copper rolled
at 300 K and the superscript b indicates the same component in the texture of copper rolled
at 77 K. In other words this is the dependence of the deformation temperature effect on
the measurement temperature. From figure 5 it is seen that the magnitude of spread of the
{112}{111}{111] component has no effect on Young’s modulus in the TD and this holds also
for the {110}{112}|111| component in a direction making an angle of about 55° with the
RD in the RD—TD plane. This correlates with locations of the exit of the {110} poles for the
components under consideration.

Values of the elastic properties in directions out of the sheet plane must be known in
order to calculate the stress and strain state of the anisotropic plates [16]. However, the
experimental measurement of these values under sufficiently low thicknesses of the plates
presents great difficulties. In this case, one may use the theoretical calculations, e.g. in the
framework of the approach presented here.

The analysis of contributions of separate components to the total anisotropy shows that
Young’s modulus can be varied by the texture in the RD and to a smaller extent in the TD
and the ND in the case of rolled copper.

In this paper the results of calculations in the Reuss approximation are presented, since
only relative changes in the elastic properties and the contributions of separate texture
components were of basic interest to us, but their precise magnitudes were not.
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